Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator.

نویسندگان

  • Carsten Tischbirek
  • Antje Birkner
  • Hongbo Jia
  • Bert Sakmann
  • Arthur Konnerth
چکیده

In vivo Ca2+ imaging of neuronal populations in deep cortical layers has remained a major challenge, as the recording depth of two-photon microscopy is limited because of the scattering and absorption of photons in brain tissue. A possible strategy to increase the imaging depth is the use of red-shifted fluorescent dyes, as scattering of photons is reduced at long wavelengths. Here, we tested the red-shifted fluorescent Ca2+ indicator Cal-590 for deep tissue experiments in the mouse cortex in vivo. In experiments involving bulk loading of neurons with the acetoxymethyl (AM) ester version of Cal-590, combined two-photon imaging and cell-attached recordings revealed that, despite the relatively low affinity of Cal-590 for Ca2+ (Kd=561 nM), single-action potential-evoked Ca2+ transients were discernable in most neurons with a good signal-to-noise ratio. Action potential-dependent Ca2+ transients were recorded in neurons of all six layers of the cortex at depths of up to -900 µm below the pial surface. We demonstrate that Cal-590 is also suited for multicolor functional imaging experiments in combination with other Ca2+ indicators. Ca2+ transients in the dendrites of an individual Oregon green 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-1 (OGB-1)-labeled neuron and the surrounding population of Cal-590-labeled cells were recorded simultaneously on two spectrally separated detection channels. We conclude that the red-shifted Ca2+ indicator Cal-590 is well suited for in vivo two-photon Ca2+ imaging experiments in all layers of mouse cortex. In combination with spectrally different Ca2+ indicators, such as OGB-1, Cal-590 can be readily used for simultaneous multicolor functional imaging experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo two-photon calcium imaging of neuronal networks.

Two-photon calcium imaging is a powerful means for monitoring the activity of distinct neurons in brain tissue in vivo. In the mammalian brain, such imaging studies have been restricted largely to calcium recordings from neurons that were individually dye-loaded through microelectrodes. Previous attempts to use membrane-permeant forms of fluorometric calcium indicators to load populations of ne...

متن کامل

A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging.

The introduction of calcium ion (Ca(2+)) indicators based on red fluorescent proteins (RFPs) has created new opportunities for multicolour visualization of intracellular Ca(2+) dynamics. However, one drawback of these indicators is that they have optimal two-photon excitation outside the near-infrared window (650-1,000 nm) where tissue is most transparent to light. To address this shortcoming, ...

متن کامل

Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo

Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expres...

متن کامل

An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator

Genetically encoded calcium indicators (GECIs) enable imaging of in vivo brain cell activity with high sensitivity and specificity. In contrast to viral infection or in utero electroporation, indicator expression in transgenic reporter lines is induced noninvasively, reliably, and homogenously. Recently, Cre/tTA-dependent reporter mice were introduced, which provide high-level expression of gre...

متن کامل

Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse’s inferior colliculus

In vivo Ca2+ imaging is a powerful method for the functional assessment of neural circuits. Although multi-photon excitation fluorescence microscopy has been widely used, observation of circuits in deep brain regions remains challenging. Recently, observing these deep regions has become possible via an endoscope consisting of an optical fiber bundle or gradient-index lens. We have designed a mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 36  شماره 

صفحات  -

تاریخ انتشار 2015